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1. Introduction and Summary

In this and two previous grant periods, our research group has developed TETRAD I1 and used

it in collaboration with researchers at NPRDC to analyze data sets pertinent to manpower

issues, e.g. recruiter satisfaction (Scheines 90). TETRAD II is a suite of tools to aid in the

discovery of causal models of statistical data. The work during this grant period focussed on

three areas: 1) making TETRAD II friendly enough to be used productively by non-developers,

2) developing a new module of TETRAD II that helps discover causal structure among latent, or

unmeasured, variables, and 3) to use this tool to help analyze the NPRDC Youth Attitude

Tracking Survey (YATS) data set.

To make TETRAD II friendly enough for non-developers, we stabilized and debugged the

program, and wrote and tested a 200 page users manual, which is available upon request. In

October 1991, we installed the program at NPRDC and distributed the user's manual to several

researchers there.

The module that helps discover causal structure among latent variables, MIMBuild,1 has been

completed and is a part of the TETRAD II program delivered to NPRDC in October 1991. It is

described in two papers written during the grant period, (Scheines 91 and Scheines 92). The
module has been tested on simulated data (Scheines 92), on real data (Callahan 92) and its

algorithm has been proved correct (Spirtes 92).

Stephen Sorensen of NPRDC and Jan Callahan of Callahan Associates have used an early
version of MiMBuild to construct a latent variable model of civilian attitudes toward a military

career. They found that as a tool, MIMBuild compares favorably to more standard factor

analytic techniques. The report their results in "Using TETRAD II as an Automated Exploratory

Tool" a paper which is due to appear in the 1992 fall issue of Sociological Methods and

Research, which received a Certificate of Commendation from The Chief of Naval Research in

recognition of nomination for Best FY-90 Independent Exploratory Development Project, and

which we include in this report as an Appendix. Accesion For
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2. TETRAD II

TETRAD II now has seven modules, each of which has its own chapter in the user's

manual. In summary, they are:

Build - Takes covariance, correlation, or categorical data and outputs a class of

causal structures that explain the independence and conditional independence

relations judged to hold in the population from which the sample is taken.

Search - Takes covariance data and an initial structural equation model with

latent variables and outputs a class of respecifications of the model.

Mimbuild - the Multiple Indicator Model Builder. Takes a list of latent
variables, a set of indicators for each latent variable, and the covariance or

correlation matrix among all of the indicators, and outputs a class of causal

structures among the latent variables.

Monte - the Monte Carlo Generator. Takes a causal structure and information

about its interpretation, and outputs sample data generated pseudo-randomly

from the distribution characterized by the interpreted and parameterized causal

structure.

Estimate- Takes a Bayesian network and categorical data, and provides a

maximum likelihood estimate of the joint distribution that satisfies the
independence constraints imposed by the Bayesian network's causal structure.

Update - Takes a parameterized Bayesian network and values for a subset of its
variables, and produces the conditional distribution of the remaining variables.

EQSwriter - Takes a causal structure, interpreted as a linear structural equation

model, and covariance data, and produces an input file to EQS, a popular

estimaim-ackage for structural equation models.

The program and its source code are installed on a Sun 4 Workstation at NPRDC supervised by

Stephen Sorensen., We have already updated the program twice, and will continue to do so
periodically,. Besioles including detailed instructions on each of TETRAD Is modules, the
user's manuar alsd includes an introduction explaining the basic theoretical ideas that the
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program is based on (chapter 1), a guide to the research contexts appropriate for each module

(chapter 1), and a series of applications to illustrate the use of each module (chapter 11).

In the future we hope to improve the program's interface by shifting from a command based

interface to one that is menu driven.

3. MIMBuild

3.1 The Problem Addressed

MIMBuild helps specify multiple indicator models. A multiple indicator model is a
structural equation model with latent variables in which each latent variable has at least two

measured indicators. Multiple indicator models are typically divided into a "structural model,"

which is a system of simultaneous equations among latent factors (equation 1), and a
"measurement model," which is a system of equations describing the relations between latent

and measured variables (equation 2). The structural model can be given by2

Ill T1 = Bl+

where il is a (m x 1) vector of latent factors, is a (m x 1) vector of disturbances, B is a (m x

m) matrix of coefficients, and Var() = T. The measurement model can be given by

[2] y= ATI+e

where y is a (p x 1) vector of observed variables, A is a (p x m) matrix of factor loadings, e is a
(p x 1) vector of disturbances, and Var(e) = e.

Such models can be parameterized by a vector 0 of the exogenous variances (and covariances)
in '1 and Oe, and the linear coefficients in B and A. Specifying a particular 0 produces a

covariance matrix Z = Z(O) among the observable variables y. Various techniques exist for

estimating 0, e.g., full-information maximum likelihood (ML) as implemented in LISREL or

EQS. Our concern, however, is with specification, not estimation.

2 We neglect the usual distinction between exogenous (4) and endogenous (71) latent variables. Any model can be

written solely in terms of rj variables (Bollen, 1989). and the standard LISREL formalism for expresin snctnral
relations is much more flexible for Ti variables than it is for 4 variables.
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Let the causal structure of a model be given by Tj, y, and those elements of B, A, IF, and Oe

that are not fixed at 0. A causal structure can be represented without any loss of generality by a
diagram in which only those elements of B, A, IF, and Oe that are not fixed at 0 are pictured.

From the diagram in figure 1, for example, we can infer that % is diagonal.

\B2 2

X 21423

Y8 3 Y4 85 Y
P1 C2 e3 e4 C5 e 6

Figure 1

Besides giving a causal structure, specifying a model can involve imposing constraints on 0.

For example, certain parameters can be fixed at non-zero values, sets of parameters can be left

free but constrained to be equal, etc. Here we will not consider models with these types of

constraints.

The problem with model specification is that often the space of plausible alternatives is vast,

even for relatively small models in which a lot of background knowledge is available. The

following example illustrates this point.

In his book, Structural Equation Models with Latent Variables, Ken Bollen discusses an

example from social psychology analyzed by Marsh and Hecevar (1985). The model involves

four latent variables concerning self-concept for fifth graders. Bollen's example employs the
measurement model in figure 2, where the latent variables are each self-measures of the

following four dimensions:

Tj = Self-Image of Physical ability

112 = Self-Image of Physical appearance

13 = Self-Image of Relations with peers

114 = Self-Image of Relations with parents
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Figure 2

The example illustrates how difficult it can be to locate the model or class of models that best fit
the data. Suppose that we were quite confident that the measurement model as specified was
correct. That is, suppose we believed that no two error terms are correlated, that no error term
is correlated with a latent variable, and that each indicator measures the latent it is connected to
and no other. Although in this case we have no reason to believe so, suppose for illustrative
purposes that we were also willing to simplify matters by assuming that the latents we specified
are causally sufficient, i.e., that no pair of the il variables are effects of a latent not already
included in our model.3 Then all that remains is to specify the strucutral model among l I - 114.
To do this, we have to specify, for each pair < li,7lj>, whether 1i causes Tjj, Tjj causes TIi, or
whether there is no direct relation between the two.4 Since all of the latent variables are self

measures, there is little reason to prohibit causal connections between them a priori. Thus even
with only four ius, there are still 729 different structural models, most of which are identified.
If there were 12 TIs, and we were willing to make the extra assumption that the model was

recursive, then the number is truly astronomical (Harary 73):
521,939,651,343,829,405,020,504,063.

31n contrut Bollen uses this examnple to illustrate a second.order factor modeL
4 We do not consider models in which latent variables can influence each other, i.e., simultaneous equation models.



7

In general, the number of models among a set of n variables is the number of ways each pair of

variables can be connected, raised to the power of the number of pairs. For causally sufficient

structures this is 3 2), which is on the order of 3P2. Although it may be possible to use theory

to reduce the number of alternative models (at the very least it must be possible to use theory to

eliminate all unidentified models), typically a large number of eligible models will still be left.

For structures that are not assumed to be causally sufficient, the numbers are even worse.

E 9 CI el PI 4 eIl 3 el14 P-1 5 E16

41 -4-- 4

e, 82 E3 e4 85 C6 E7 8

Figure 3

Bollen in fact does not assume that the four latent variables above are causally sufficient.
Although his purpose is only illustrative, as is ours, he includes a second-order factor Y15,
"general non-academic self-image," that is a common cause of all four latent variables above.
This model (figure 3) fails a chi-square test with p <.001. Bollen does not attempt to respecify

the model so that it fits the data better, but Marsh and Hecevar estimate a host of models with
2nd and 3rd order factors, and find no model with p(X 2 ) > .001. So even though in this case

the researchers were quite confident of their measurement model, which accounts for the bulk

of the specification and is highly overidentified, they were unable to find any model which was
not rejected by a weak significance test. Moreover, because they were not able to perform a
very exhaustive search, they could not be confident that there were not other overidentified

models that fit the data better than the ones they considered.
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The general point is this: even if we are quite confident of large parts of our model, but unsure

of the specification of a small portion, the number of alternatives may still be too big to

investigate thoroughly. Even if we manage to specify a few models that pass a statistical test,

how can we accept the conclusions they suggest unless we know that all alternatives over which

we are theoretically indifferent but which lead to different conclusions fail the same test? What

is needed is a computational procedure that

1) can identify the smallest class of models that are consistent with background

knowledge and that fit the data best, and
2) is fast enough to be practical on models of realistic size.

3.2 Starting Points

No computational aid to specification can replace the scientist. Someone must choose the set of

variables to measure, they must identify and interpret the latent variables, and they must insure

that the models specified are identified and cohere with established knowledge. Different
scientists attempting to build a latent variable model begin the specification task with different
sorts of knowledge. In panel models time order and symmetry can play a large role, while in
some studies the data are entirely cross-sectional. Background knowledge might rule out certain

connections, require others, make some connections probable, and be totally indifferent over

the rest. This sort of background knowledge might be representable within a Bayesian

framework, and some researchers have begun to explore this possibility (Cooper 91, Buntine
91). Incorporating background knowledge optimally is a topic that we hope to address

systematically in future research. For present purposes, we asked ourselves the following

question: what parts of a model's specification is a scientist often confident about? Our answer:.
an overconstrained measurement model.

In many studies, especially those that involve survey data, the relevant set of latent variables
and measures for them can be specified with some confidence. That is, in many studies a

measurement model can at least be partially specified. What is usually in doubt about such

measurement models is not the connections asserted to exist, but whether there are other

unspecified connections that might also exist. For example, if subjects are asked the question:
"Do you like your job?" in 1975 and again in 1980, no one doubts that their answers measure

the latent variables "Job Satisfaction in 1975" and "Job Satisfaction in 1980." Few would be
confident a priori that the disturbances of these questions are uncorrelated, however. In many
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cases it is also unclear whether an indicator loads only on the latent variable it was intended to

measure.

We have therefore chosen to assume that the modeller has chosen an appropriate set of latent

variables, and has chosen at least two indicators for each latent variable that actually measure the

latent variable. We also assume that the modeller has no additional information that would help

him or her distinguish among the set of possible identified models. Although this assumption is

obviously never true in practice, it represents in some sense the worst case. Any knowledge

that can be brought to bear to narrow the class of structural models, or order them in some way,

can only help matters. Incorporating such knowledge explicitly into the procedures we discuss

below is a research topic we hope to address in the future.

We impose three conditions on the initially specified measurement model y = Al + e:

1) no row in A has more than one non-zero,

2) no column in A has less than two non-zeros, and

3) 1e is diagonal.

We also impose an additional assumption about the relationship between the initially specified

model and the true measurement model, namely:

4) if A(ij) * 0 in the specified model, then A(ij) * 0 in the true model.

The first three conditions describe features of the initially specified model. The first says that

every indicator loads on only one latent variable, the second says that each latent variable is

measured by at least two indicators, and the third says there are no correlated disturbances.

Gerbing and Anderson (1982) call a measurement model of this sort uni-dimensional. Scheines

(1992) calls it a pure measurement model. The last condition indicates that in the true model,

any indicator that is initially specified to measure a latent variable does in fact measure the latent

variable. Such a measurement model might still be misspecified in three ways:

1) Indicators might measure more than one of the specified latent variables,

2) Error terms might be correlated, and

3) Indicators might be directly related.
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Correcting these sorts of specification errors, if we could identify them, involves only freeing

parameters initially fixed at zero.5 Thus we say that the initially specified measurement model is

strictly overconstrained.

3.3 Tetrad Differences and Multiple Indicator Models

Tetrad differences involving different foursomes of indicators provide different types of

specification tests, including tests for the purity of the measurement model. These tests have

three main advantages over Langrange Multiplier types of tests, which are used by LISREL,

EQS, and CALLS. First, they are localized tests in that they focus on one part of the model and

do not require a specification of the other parts of the model. As such, their reliability does not

depend on the full structure being correctly specified, which is exactly what cannot be

guaranteed when the true model is unknown. Second, they test a number of overidentifying

restrictions simultaneously and thus can economize on the number of separate tests that have to

be performed. Third, they are analytic tests and thus can be computed quickly. The last two

advantages mean that searches based on tetrad differences can be much more exhaustive than

say Lagrange Multiplier type searches. The first advantage speaks to the reliability of searches

based on tetrad differences.

To illustrate, consider how tetrad differences can be used to isolate pure indicators in the

measurement part of the model. Suppose we want to test whether four indicators yl-y4 of a

single latent variable are pure. This is equivalent to testing whether the disturbances el-e4 in

figure 4 are uncorrelated, as in Figure 4-a. Tetrad differences among the four indicators vanish

only if no pair of the disturbances are correlated (Spearman 04, Gerbing and Anderson 82,

Glymour, et.al, 87). Thus, tetrad differences provide an analytical way of simultaneously

testing whether all the disturbances are uncorrelated without having to specify the rest of the

model, including the structural model.

51n fact correcting the third son of specification error is more complicated. It involves rewritlng the model so that each

indicator is actually represented as an 71 variable so that it is possible to represent the possibility that indicators
directly influence each other. See (Bollen 89).
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Figure 4

Now consider how tetrad differences can be used to test whether the disturbances in the

indicators of one latent variable are uncorrelated with the disturbances of the indicators of
another latent variable. Tetrad differences among two indicators yl,y2 of one latent variable i l

and two indicators y3,y4 of another latent variable 1i2 vanish (figure 5-a) only if no cross-

construct pair of error terms are correlated (figure 5-b), regardless of the type of connection
between jIj and 172 (Gerbing and Anderson 82, Glymour et.al., 87). Once again tetrad

differences provide an analytical way of testing a set of constraints without having to specify the

full model.

S1 _1 I 1

FYi1 FY2 YE [9 Li3~ iiL~I

tit t4t t4,
El £6 2£3 4 1 2~ 3 e4

(a) (b)

Figure S

Tetrad differences can also be used to test whether indicators load on only one latent variable.

For example, tetrad differences among three indicators yl,y2,y3 of a latent variable T) I and one

indicator y4 of another latent variable 12 vanish (figure 6-a) regardless of the type of connection

between Ti I and 712 only if 1) no pair of disturbances ei-Ej are correlated (figure 6-c), and no

indicator of TjI loads on 112 (figure 6-b) (Glymour et.al., 87).
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Figure 6

Thus, if each latent variable has at least four indicators in the initial model, then the same type of
test can be used to detect impurities in the measurement model regardless of the structural
model.

A different sort of tetrad difference provides a specification test for certain aspects of the
structural model. If the measurement model is pure, then all three possible tetrad differences
among two indicators yl,y2 of a latent variable i1l, one indicator y3 of another latent variable
T12, and a fourth indicator y4 of a third latent variable T3 are strongly implied to vanish (figure
7) only if the model strongly implies that P-q2,fi3lx = 0 (Spirtes 92). If Pq2,q3.qI = 0, then
there can be no direct relation relation between 1i2 and 13.

1 2 F 3 iu 4

Figure 7
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Still another specification test for the structural model is possible if the measurement model is

pure. If yi is an indicator of ijI and yj is an indicator of T12, then P-q1,-q2 = 0 if and only if Pyiyj

= 0.

3.4 The MIMbuild Procedure

MIMbuild takes as input the sample covariances of the observables and a strictly

overconstrained measurement model.6 MIMbuild has been tested on models involving as many

as ten latent variables and 50 indicators. Because its complexity is a polynomial function of the

number of measured variables instead of an exponential one,7 it runs on such models in

seconds instead of hours or days, and we are confident that it will run in feasible time even on

models with over 100 measured variables.

MIMbuild proceeds in three stages. In the first it eliminates impure indicators until it is left with

a uni-dimensional, or pure, measurement model. In the second it identifies which pairs of latent

variables are adjacent in the structural model,8 and in the third it orients, or provides a causal

direction to, as many of the connections as it can. For example, suppose that the true model is

as below (figure 8), and the initial, conjectured model input to MIMbuild is the measurement

model in figure 9.

6 A prototype version of MIMbuild is described in detail in. Scheines, R. end Spirtes, P., (1992) "Finding Latent

Variable Models in Large Data Bases," forthcoming in a special issue of the International Journal of Intelligent
Systems, ed. Greg Piatetski-Shapiro.
7The algorithms complexity is bounded by the number of tetrad differences it must check. which in tan is bounded by
the number of foursomes of measured variables. If there are n measured variables the total number of foursomes is on the

order of A. We don't check each possible foursome, however, and the actual complexity depends on the number of
latent varibles and how many variables measure each latent. If there are m latent variables and s measured variables for
each, then the number of foursomes is O(m 0 s4). Since mes - n this is O(n 0 s3), which is much lower than O(n4 ) if a
<< n.
8''wo variables X and Y are adjacent if either X is a direct cause of Y or Y is a direct cause of X.
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Figure 8: The True Model
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Figure 9: The Measurement Model Input to MIMbuild

In order to deploy the tetrad difference specification test for the structural model, the

measurement model must be pure. Thus the first part of the strategy in MIMbuild is to locate

and discard those indicators that are impure. Five of the indicators in figure 8 are impure:



15

yly2,y4,y5,and y1 3. All five do not need to be discarded to achieve a pure measurement

model. Removing any of the following sets will do: (yl,y4,yl3) (yl,y5,yl3) (y2 ,y4,yl 3)

(y2,y5,y 13). The procedure used in MIMbuild to choose which set of indicators to eliminate is

discussed below. Suppose MIMbuild removes the first of these sets of indicators, resulting in

the pure measurement model pictured in figure 10.

P- £ 10 F-11 C£12 E14 CIS £136

44

Y12 Y3 Y

E2 £3 e4 £6 £7 £a

Figure 10

At this point it tests for correlation among each pair of latents by checking for correlation among

their indicators. In the above example, it would find that pql.q4 = Pq2,4 = 0. Finally, for any

pair of latents that it judges are correlated, it checks whether they are correlated when partialed

on a third latent. To do this it uses tetrad differences of the final sort described above. In this
example, it would find that P1,-q3.i12 = 0. Accordingly, MIMbuild would output the partially

directed causal structure in figure 11.9

34

Figure 11

9 1n this diagram and those that follow, for simplicity we have ommitted the disturbarce tmrs. They should be sova
of as there implicitly.
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The edge between 111 and ij2 is undirected because MIMbuild does not have enough

information to orient it. It really means that MIMbuild is outputting the two structures shown

in figure 12.

0 3 3

Figure 12

3.5 Simulation Studies of MIMBuild's Reliability

To test the behavior of the procedure on sample data, we used TETRAD Irs Monte Carlo generator to

produce data from the causal graph in figure 13, which has 11 impure indicators.

X17 X18 IX19  LX21 ,I X22 1X IX 21 X5ix 26127xP23 X 29 Ix 3  XJ!-

Figure 13
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Impure Indicators = (X 1 , X 2 , X4 , X 10 , X 12 , X 14 , X 18 , X2 3 , X2 5 , X2 7 , X 3 0 )

The distribution for the exogenous variables is- standard normal. For each sample, the linear coefficients

were chosen randomly between .5 and 1.5.

We conducted 20 trials each at sample sizes of 100, 500, and 2000. We counted errors of commission

and errors of omission for detecting uncorrelated latents (0-order) and for detecting 1st-order d-

separation. In each case we counted how many errors the procedure could have made and how many it

actually made. We also give the number of samples in which the algorithm identified the d-separations

perfectly. The results are shown in the next table, where the proportions in each case indicate the

number of errors of a given kind over all samples divided by the number of possible errors of that kind.

over all samples.

Sample Size 0-order 0-order 1st-Order 1st-Order Perfect

Commission Omission Commission Omission

100 2/80 0/40 7/220 1/20 13/20

500 1/80 0/40 21220 0 19/20

2000 0 0 0 0 20/20

Extensive simulation tests with a variety of latent topologies for as many as six latent variables,
and normally distributed variables, show that for a given sample size the reliability of the
procedure is determined by the number of indicators of each latent and the proportion of
indicators that are confounded. Increased numbers of pure indicators make decisions about d-
separability more reliable, but increased proportions of confounded variables makes identifying

the pure indicators more difficult. For large samples with ten indicators per latent the procedure
gives good results until more than half of the indicators are confounded.

4. YATS

As Sorensen and Callahan discuss in their appended paper, the Youth Attitude Tracking Survey
provides an excellent test case for the MIMBuild procedure. The Survey consists of hundreds
of questions that are reasonable indicators of several latent psychological attitudes. In order to

model the relations between such attitudes, a measurement model for each attitude must be
constructed. If the measurement models constructed are misspecified, then inferences about the
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relationships between the attitudes based on them are compromised. Thus a crucial step in the

modeling process involves forming such measurement models.

Sorensen and Callahan constructed measurement models with two techniques, one an early
precursor to MIMBuild that we called SCALES, and the other standard exploratory factor

analysis as implemented in SAS. SCALES does not construct measurement models entirely
automatically, and offers no guidance whatsoever on how to construct the structural model
among latent attitudes. To construct the structural model, Sorensen and Callahan used the Build

different module of TETRAD II, then called Partial. The most recent version of MiMBuild

automatically constructs the measurement model and then automatically outputs a class of
structural models. Even working with a diminished tool-set, however, Sorensen and Callahan

were able to locate several full structural equation models for the civilian group that fit the data
quite well (p(X 2) > .7) and were intuitively quite plausible. Given that the sample size of their

data set exceeded 7,000, and that they were not involved in the data collection process, this is

an unusually successful modelling episode.
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Appendix A. The MIMBuild Algorithm

Al. The Algorithm

MIMBuild first purifies the measurement model, and then computes a class of structural models

that strongly imply the vanishing correlations and vanishing first order partial correlations
among the latent variables. Its output for the second stage is a modified pattern 1, i.e., partially

directed acyclic graph in which several sorts of adjacencies can occur:.

A--B
A->B
A?-B
A?>B

The algorithm's strategy is similar to the PC algorithm in the Build module. It begins with a
complete undirected graph, prunes adjacencies, and then orders those that remain.

The MIiMuild AlQorithm

Begin: For every pair of latent variablesX,Y, let X--Y be in 7.
Eliminate an edge X--Y from 17just in case either

i) PXy = 0, or
ii) there exists a Z distinct from X and Y such that pxyz = 0.

Idrnfifng Causal Order

Begin: Let /'be the output from Forming the Adjacencies.

1) Forming Colliders
For every triple X, Y, Z such that exactly X--Y--Z is in 1, i.e.,

i) X--Y is in 17,
ii) Y--Z is in 7, and

iii) X--Z is not in 1,

if a) PXZ f 0, or

b) pxz 0 and pxz.y # 0,

then order X--Y--Z as X->Y<-Z
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2) Avoiding Colliders

Repeat

For every triple X, Y, Z such that exactly X--Y<-Z is in 7,

if pxZ.y = 0, then X--Y is X<-Y.

Until an iteration is completed in which nothing changes

Maring Adianie

IfX and Y are adjacent in17, and there is some path of length > 2 connecting X and Y in17,

and there exists no vertex Z such that

a) Z occurs on all undirected paths P of length ; 2 connecting X and Y in fZ and

b) there do not exist two undirected paths Pi and Pj r P such that Z could occur as a

collider on Pi and a non -zollider on Pj

then convert X--Y to X?-Y, or convert X->Y to X?>Y, or convert X<-Y to X<?Y.

A2. Theoretical Reliability and Complexity

Supposing that G is a pure latent variable model parameterized such that every vanishing

correlation and vanishing tetrad difference is strongly implied to vanish, then the following

theorem about MIMBuild's theoretical reliability is proved in (Spirtes 92).

Theorem 1: If G is a pure latent variable model in which each latent variable has at

least two measured indicators, and MIMBuild is given the set of vanishing correlations

and vanishing tetrad differences strongly implied by G, then its output His correct in

the following respects about G.

A-i) If X and Y are not adjacent in 7, then they are not adjacent in G.

A-2) If X--Y or X->Y is in 7, then X and Y are adjacent in G.

Ordezing

0-1) IfX?>Y is in , then every trek in G between X and Y is into Y.

0-2) If X->Y is in 7, then X->Y is in G.
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The algorithm's complexity is bounded by the number of tetrad differences it must check,

which in turn is bounded by the number of foursomes of measured variables. If there are n

measured variables the total number of foursomes is O(n4). We don't check each possible

foursome, however, and the actual complexity depends on the number of latent variables and

how many variables measure each latent. If there are m latent variables and s measured
variables for each, then the number of foursomes is O(m s). 10 Since m*s = n, this is O(n *

S3).

lOse (Scheimes 91).
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ABSTRACT

An automated process for forming measurement models and structural equation models was

developed using an experimental version of TETRAD II. An evaluation function was

developed to select the measurement models and the structural models for further

consideration. Comparisons were made between developing the models in this way and

using factor analysis to develop measurement models. We found TETRAD II useful in

building sets of measurement models and in suggesting sets of possible structural models.

A previously unstudied dataset with a sample size of 7625 was used for testing the process.

We developed measurement models and structural equation models which satisfied our

intuitive understanding and had a Chi-square goodness-of-fit p-value of 0.77.

Keywords: EQS, structural models, measurement models, model specification, TETRAD.



INTRODUCTION

Researchers at the Navy Personnel Research and Development Center (NPRDC) are

often requested to analyze large datasets that they did not design or collect. Occasionally,

questions must be answered for which the data were not designed. As a result, we have

been studying techniques for discovering information from large databases about which little

is known. As part of this project, we have been using and evaluating the TETRAD II

program (Spirtes et al., 1992).

TETRAD was designed as an aid in elaborating or respecifying structural equation

models (Glymour et al., 1987). Spirtes, Scheines and Glymour (1990) have shown that

TETRAD II's elaborator performs well in simulations. Given a correlation matrix and a

structural equation model, the elaborator then finds alternate sets of structural equation

models that satisfy the correlation constraints of the data and the model.

We used two experimental modules of TETRAD II to form measurement and

structural equation models. We automated the selection and evaluation of the models. The

result of this process is a set of tentative models which can be used as a basis for further

research.
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SPECIFYING A MODEL

Only recently have statisticians begun to address model specification (Lehmann,

1990). Stepwise regression and all possible models methods (Draper & Smith, 1981) are

data-driven techniques developed to reduce dimensionality and investigate the "best" model.

Edwards & Havrfnek (1985) extended all possible models techniques to quickly find

multiple regression models for large, complex problems. A large literature has developed

on graphical techniques for dimension reduction and model building (Chambers, Cleveland,

Kleiner and Tukey, 1983). Cook and Weisberg (1990) have developed interactive graphical

techniques for model selection that include not only variable selection but also the functional

form of those variables. Weihs and Schmidli (1990) have developed an interactive graphical

tool for multivariate exploratory analysis.

CART and CHAID are non-parametric computerized techniques which develop tree

models for predicting a categorical outcome variable. Edwards and Havr'Anek (1987)

presented techniques for searching for models in multidimensional contingency tables.

In the spirit of these model specifying techniques we decided to use TETRAD II to

generate sets of measurement and structural equation models for latent variables. To the

best of our knowledge, this is the first technique available for locating sets of possible

structural equation models. Substantive knowledge complements this technique in three
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ways: selecting variables to measure, choosing variables as possible indicators of a latent

variable, and rejecting nonsensical models.

METHODS

We used a large dataset with which we were unfamiliar. We developed measurement

models for latent variables and then built structural models detecting causal relations among

such latent variables. Measurement models were formed in two ways: clustering of variables

and factor analysis. TETRAD II was used to select subsets that form pure measurement

models. After selecting measurement models, structural models were built using TETRAD

II. We evaluated all the measurement models and structural models using the EQS

program.

Measurement Models Formation - Theory

An experimental module of TETRAD II, SCALES, was used to form pure

measurement models. A pure measurement model is one in which all correlations between

the indicator variables, Qx.xj, are due solely to the common effects of a single latent variable.

Given a group of possible indicators of one latent variable, SCALES searches for five-

variable subsets that are pure measurement models for that latent variable. High

correiations are expected among the variables in this group; variables with zero correlations

are eliminated.
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A pure measurement model implies that all the tetrad equations are true. That is,

for all sets of four variables in the measurement model, X, Xj, X., and Xn, the tetrad

equation, Qi.j * L, .. - Qi.m * =j~n " 0, is true. ei., is the true correlation between Xi and Xj

in the population. If there are five variables in the measurement model, then there are 15

tetrad equations.

SCALES judges the pureness of a measurement model by evaluating the 15 sample

tetrad equations from each fivesome (Glymour and Spirtes, 1988). The residual from each

sample tetrad equation, ri.j * rmn - rim * r.n, is calculated, where rj are sample correlations.

On the assumption that each equation holds in the population, SCALES calculates the

probability that the residual from the tetrad equation is as large as or larger than, the one

observed. This is equivalent to a p-value for the hypothesis that the residual equals zero.

We would like these probabilities to be large. SCALES prints out the minimum and the

average of the 15 probabilities.

SCALES also prints out the proportion of tetrad equations that can only be explained

by a latent variable. If there exists a measured variable, XP, such that all partial correlations

partialled on XP (eij.p for i, j=1, 2, 3, 4) are zero, then the tetrad equation among X1, X2,

X3, X4 is true. This means a tetrad equation can only be explained by a latent variable if

there does not exist another measured variable, XP, such that all partial correlations

partialled on X, are zero (Spirtes, 1989).
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SCALES calculates the above three assessments for every possible fivesome and

foursome. For a more detailed discussion of the SCALES module, see Scheines, et al., 1991.

Measurement Models Formation - Procedure

Variables were clustered as indicators of some latent variable by two methods:

grouping questions that addressed the same issue and factor analysis (Bollen, 1989). We

chose PROMAX rotations because these rotations made the most sense. The factor

analyses often found only 2 or 3 variables for each factor. These factors could not be

evaluated by SCALES, because SCALES requires at least 5 variables. Nor could these

factors be evaluated by EQS, because with only 2 or 3 variables the models are

underidentified. A third technique is available for evaluating measurement models: a

TETRAD II module called PARTIAL However, we exceeded the number of variables that

PARTIAL could analyze. As a result, those factors had to be dropped from further analysis.

All factor analyses were performed using SAS on an IBM4381.

After giving SCALES a cluster of variables and receiving sets of foursomes and

fivesomes, we ranked these sets according to the sum of the 3 assessments discussed above.

The top 20 sets (many latent variables did not have that many) were then evaluated by EQS

using SCALES-generated EQS code. For each latent variable, we selected as the

measurement model the foursome or fivesome with the highest p-value for the Chi-square

goodness-of-fit test from EQS. We were careful to insure that each variable was included
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in only one measurement model. The same variable in two measurement models would

violate a pure measurement model.

Structural Equation Models Development

We estimated the correlations among the latent variables with EQS. Path models

were then constructed with another experimental module of TETRAD II, PARTIAL. The

PARTIAL module of TETRAD II eliminates causal connections between two variables by

using partial correlations as statistical tests for conditional independence. If two variables

are independent conditional on some other set of variables, then the two variables are not

directly causally connected (Spirtes et al., 1991). Thus, through a process of elimination,

PARTIAL produces a set of possible structural models. We evaluated all these structural

models for goodness of fit with EQS.

The Dataset Used

The data we used consisted of responses to the Youth Attitude Tracking Survey

(YATS). Each year this questionnaire is given to about 10,000 young persons between the

ages of 18 and 25. These individuals are tracked to see if they enlist in the military. The

purposes of the questionnaire are to evaluate the effectiveness of recruitment advertising

and to look for any enlistee-identifying characteristics. We used the responses from the 1985

questionnaire because five years had elapsed during which respondents could have enlisted.
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Many of the questions in YATS can be answered yes or no. We derived variables

that approximate continuous measures for use in TETRAD II. We were primarily interested

in identifying any differences between those who enlisted and those who did not. Rather

than include this binary variable in any model, we divided the responses into two datasets,

military and civilian and analyzed each separately. There were 7625 civilian respondents

(i.e., respondents with no enlistment to date) and 854 individuals who had enlisted.

RESULTS

Table 1 contains an example of a common-sense grouping of the questions that we

believed addressed "how likely a respondent felt he or she was to enlist in some branch of

the military in the future" (the Likely Military latent variable). Table 2 contains the best 3

measurement models of fivesomes and the best 4 models of foursomes from this set, where

"best" means the highest values for the sum of the 3 TETRAD II probabilities. The second

through fourth columns contain the TETRAD II assessment probabilities. The rightmost

column contains the p-level from the goodness-of-fit Chi-square test from EQS. Notice that

the goodness-of-fit statistics agree in general with the TETRAD II statistics. In almost all

cases, the model with the highest sum of the three TETRAD II assessments also had the

highest p-value from EQS. Occasionally the model with the highest p-value from EQS had

the second highest sum of the three TETRAD II assessments.
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The PARTIAL module provided 3 to 20 structural models for each dataset (civilian,

military, clusters, factor analysis). Most of these models differed only in the causal direction

between one or more pairs of latent variables. Some latent variables were never causally

connected to others. These latent variables were dropped from the structural model.

Usisng Chi-square goodness-of-fit p-values from EQS to evaluate each of the suggested

structural models, none of the structural models using factor analysis measurement models

fit well: The highest p-value for the Chi-square goodness of fit was .0201 and most p-values

were <.001. Similarly, the structural models for military enlistees using substantive groupings

for measurement models all had p-values <.001.

However, for the civilians using substantive groupings for the measurement models,

the process found consistent and revealing models. Starting with seven latent variables,

TETRAD II suggested 20 possible structural models among five latent variables, dropping

two. Some definite patterns emerged from studying the 20 models. Figure 1 summarizes

the 20 path models. The latent variables have been abbrcviated as follows: CURrent JOB,

FRIENDS support military, FUTure JOB, FUTure MILitary plans, LIKELY military. The

heavy-lined edges are required for a good fit. Any path models without these edges, or with

any of these edges pointing in the opposite direction, had very low p-values. The light-lined

edges were included in models that fit well, but the direction of these edges was unclear.

However, no more than one of the light-lined edges could have the direction switched from

Figure 1 and still fit well.
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Specifically, four structural models had Chi-square goodness-of-fit p-values of 0.77.

All four models contained the five heavy-lined edges with the coefficients and directions

indicated. One model had all the edges and directions displayed. The other three models

had one of the three light edges pointing in the other direction. Two more models had two

of the three light edges pointing in the opposite directions; they had p-values near 0.4. All

other path models had very low p-values, <=.05.

Many of the heavy-lined edges make sense. Individuals' current jobs impact on their

thoughts about their future jobs. And how the individuals feel about possible future non-

military jobs is causally connected to how they feel about a future in the military. The

negative coefficient for that edge means that the more positive individuals are about a future

non-military job the less they see a future in the military. Similarly, if friends or relatives are

positive about the military, or if the friends or relatives think positively about a future

military career, then the respondents are more likely to see a future for themselves in the

military.

CONCLUSIONS

We found TETRAD II a useful method for uncovering and evaluating tentative

measurement models and for building and eliminating structural equation models on the

latent variables. We began with a new database and were able to generate structural

equation models that fit remarkably well. TETRAD II is very helpful in indicating what
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does not work. Variables that never appear in a foursome or fivesome are not useful as an

indicator for that latent variable. Also, if a latent variable does not appear in any suggested

structural equation model, that latent variable is not useful.

We were impressed with the quality of the model that TETRAD II produced. Could

a human researcher have found a model as good as that found by the computer? We don't

know. Although we had to write computer programs to link TETRAD II and EQS, the

computer made its own decisions as it searched for the model. The computer acted solely

from the evaluation functions that we provided.

Statisticians and most researchers are aware that if you look hard enough you will

find a model that fits a dataset. This model, however, may not fit a new dataset well. Due

to the optimizing, stepwise regression and all-models methods almost always understate

errors for future datasets. CART and CHAID have techniques for correcting for the

optimization. Our technique with TETRAD II has no built-in technique for adjusting p-

levels for the optimizing. Test samples, cross validation or bootstrapping techniques (Efron

and Tibshirani, 1991) can be used with our TETRAD II technique to correct for optimizing.
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Table 1. Cluster of Questions for the "Likely Military" Latent Variable

Variable Question

Q505 How likely is it that you will be serving in the National Guard?

Q507 How likely is it that you will be serving in the Reserves?

Q509 How likely is it that you will be serving on active duty in the Coast Guard?.

Q510 How likely is it that you will be serving on active duty in the Army?

Q511 How likely is it that you will be serving on active duty in the Air Force?

Q512 Hov likely is it that you will be serving on active duty in the Marine Corps?

Q513 How likely is it that you will be serving on active duty in the Navy?

Q514 How likely is it that you will be going to college?

Q515 How likely is it that you will be going to vocational or technical school?

Table 2. SCALES Selections for "Likely "Military" Latent Variable for Civilian Respondents

Variables Average Prob. Minimum Prob. Prob. Needs EQS P(Chi Sq)

_____ ___II___Latent
Q507 Q509 Q510 Q511 Q515 0.633 0.000 0.87 0.0048

Q507 Q509 Q511 Q512 Q515 0.340 0.011 1.00 0.0305

Q507 Q510 Q511 0513 Q515 0.377 0.000 0.80 <.001

Q507 Q509 0511 Q515 0.835 0.750 1.00 0.9485

Q507 Q510 Q511 0515 0.704 0.570 1.00 0.8443

Q509 0510 0511 Q515 0.688 0.532 1.00 0.8208

Q507 Q509 Q510 Q515 0.679 0.537 1.00 0.8469
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